Integrated mean squared error of a smoothing spline

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

@bullet the Mean Posterior Variance of a Smoothing Spline and a Consistent Estimate of the Mean Squared Error

A smoothing spline estimator can be interpreted in two ways: either as the solution of a variational problem or as the posterior mean when a particular Gaussian prior is placed on the unknown regression function. In order to explain the remarkable performance of her Bayesian "confidence intervals" in a simulation study, Wahba (1983) conjectured that the mean posterior variance of a spline estim...

متن کامل

The Asymptotic Mean Squared Error of L-smoothing Splines

We establish the asymptotical equivalence between L-spline smoothing and kernel estimation. The equivalent kernel is used to derive the asymptotic mean squared error of the L-smoothing spline estimator. The paper extends the corresponding results for polynomial spline smoothing.

متن کامل

Root Mean Squared Error

• Predictive Accuracy Measures. These measures evaluate how close the recommender system came to predicting actual rating/utility values. • Classification Accuracy Measures. These measures evaluate the frequency with which a recommender system makes correct/incorrect decisions regarding items. • Rank Accuracy Measures. These measures evaluate the correctness of the ordering of items performed b...

متن کامل

Competitive Mean-Squared Error Beamforming

Beamforming methods are used extensively in a variety of different areas, where one of their main goals is to estimate the source signal amplitude s(t) from the array observations y(t) = s(t)a + i(t) + e(t), t = 1,2,..., where a is the steering vector, i(t) is the interference, and e(t) is a Gaussian noise vector [1, 2]. To estimate s(t), we may use a beamformer with weights w so that s(t) = w*...

متن کامل

Optimal Mean Squared Error Imaging

The problem of forming images that are optimal with respect to a Mean Square Error (MSE) criterion, based on nite data, is considered. First, it is shown that the MSE criterion is consistent with the general goal of classifying images, in that decreasing the MSE guarantees a decrease in the probability of misclassifying an image. The problem of choosing sampling locations for image formation th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1981

ISSN: 0021-9045

DOI: 10.1016/0021-9045(81)90066-6